

Welcome to pEp MixMailer’s documentation!

Analysis

	Concepts

	Requirements

	StateoftheArt

	Attacks

Design

	Proposal 1 (P1)

	Proposal 1.1 (P11)

	Proposal 2 (P2)

	Proposals 1, 2 and 1.1 arguments

	Threat model

Specification

	Introduction

	All the content

	Security Considerations

Roadmap

	Roadmap

References

	References

Indices and tables

	Index

	Module Index

	Search Page

Concepts

Anonymity

What is anonymity?

In the context of Privacy Enhancing Technologies (PET) [PET], what
people usually mean by anonymity is unlinkability, which is still
vague cause does not specify what with respect to who is unlinkable.

More specific terms related unlinkability, ie. who is talking to who
with respect some adversaries with certain capabilities [AnonTerms].

	sender anonymity

	receiver anonymity

	location anonymity

	third party anonymity

Even more specific:

	sender unobservability : whether the sender is talking at all

	receiver unobservability

To be able to define the desired “properties” in “anonymous”
communication systems, threat models should be specified.

Adversaries

Passive adversary

Adversary observing both ends

Can link sender and receiver by timing and volume patterns

Global Passive adversary

Active adversary

Adversary observing both ends

Confirmation attacks: Adversary can link sender and receiver by inducing
timing signatures on the traffic to force distinct patters

Rogue operators

Malicious node operators. Passive or active.

Threat models

Which adversaries a system protect or does not protect against?

For instance, in Wikipedia edits:

	Sysadmins can link one user unregistered edit to another by the IP

	
	If editing in a company, the company can see the amount of data at a

	certain time which can match an be seen the public Wikipedia edit.

The following is based on [ApplicationThreatModeling] and
[ThreatModelingOutputs]

Process

What are we building?

	architecture diagrams

	dataflow transitions

	data classifications

What can go wrong?

[STRIDE] and other structures can help.

Outputs

Template

Some data flow (eg. SMTP transmission of message from N1 to N2)
Some data (eg. message being transmitted)
Threat (eg. headers not encrypted, information disclosure), status (eg. open),
severity (eg. high)
Mitigation (eg. link encryption with TLS)

Requirements

TBD

Without defining the requirements first, any software we write will have
to be re-written many times.

What to implement

pEp engine transport for messagesAdd mixnet capabilities to SMTP transport

What is it for? (updated Aug 18, 2020)

	to hide metadata, in this case, Email headers YES Email from the last
node to the receiver will have the headers that pEp
adds/removes/modifies

	to a third party observer? (unlinkability, possible correlation
attacks) YES

	to the receiver? (sender anonymity) NO

	what about the sender Email From: header when the receiver
wish to reply to the sender?

	what about the sender Email Received: header?, that might
disclose sender geographic location?

	what about the sender Email Date: header?, which discloses
the time when the Email was sent

	untraceable return address? (receiver can reply but doesn’t
know the location of the sender?)

	to the sender? (receiver anonymity): NO the sender does not know
which recipient has received the message.

	to be compatible with existing Mixmaster network? Mixmaster network
still works, but small anonymity set, so NO

	to reuse the pieces that pEp or partners have developed? CAN

	to not to reinvent the wheel? SHOULD

	to have a system that anyone can extend? (scalability)

	how to convince others to run nodes? > by the extra capabilities
pEp offers > intial nodes can be run by friends

Who are users?

who is going to use MixMailer?

	pEp clients? YEA

	anyone? NO

estimated number of users/clients?:

pEp scales to billions of users

Who is going to operate the/maintain MixMailer?

	pEp company/foundation? NO

	pEp partners? NO

	anyone? YES

	estimated number of nodes?

Usability

It should be a solution that is usable by the “end user”, not only by
the nerd:

transparent to the user

Which would be the initial components of the system?

	pEp client (frontend), eg. Thunderbird plugin:

pEp client is part of the engine

	pEp engine (backend), would route the Email to MixMailer

StateoftheArt

Analysis of the state of the art in the mix networks’ systems and
software.

Contents:

	Readings

	Onion routing

	Mix networks
	Pseudonymous remailers

	Anonymous remailers

	Remailer vulnerabilities

	Katzenpost

	Nym mixnet

	Mix networks software
	reliable

	mixmaster

	Mixminion

	https://github.com/tim54000/cypherpunk-cli

	https://github.com/byte-mug/go-cypherpunk

	Running remailers

	Katzenpost

	Nym Mixnet

	Comparative remailer mix neworks, onion routing and pEp

	“Open” vs “close” system

Other

Contents:

	Peer to Peer networks
	GNUnet

Readings

[BibMixnets] contains all relevant papers about Mix networks.

The following papers are more relevant for Mixmailer:

	[Untraceable]

	[DesignAnonymous]

	[MixminionPaper]

	[Trickle]

	[Batching]

	[SurveyRouting]

	[MixCascadesP2P]

	[Trilemma]

	[Sphinx]

	[Loopix]

	[Stopandgo]

Recommended by D.:

	[Byzantine]

	[Uniform]

	[Gossip]

Onion routing

Onion routing is a technique for anonymous communication over a
computer network. In an onion network, messages are encapsulated in
layers of encryption, analogous to layers of an onion. The encrypted
data is transmitted through a series of network nodes called onion
routers, each of which “peels” away a single layer, uncovering the
data’s next destination. When the final layer is decrypted, the
message arrives at its destination. The sender remains anonymous
because each intermediary knows only the location of the immediately
preceding and following nodes

[OnionRouting]

[image: image]

Mix networks

Mix networks systems and software considered to be used for the pEp
MixMailer.

I had used the terms “mix network” and “onion routing” almost
interchangeably. In actuality I had fallen into a trap that a fair
number of people familiar with the space have fallen into: using
those terms without a solid differentiation. This blog post aims to
correct that.

[MixOnion]

Mix networks are routing protocols that create hard-to-trace
communications by using a chain of proxy servers known as mixes which
take in messages from multiple senders, shuffle them, and send them
back out in random order to the next destination (possibly another
mix node). This breaks the link between the source of the request and
the destination, making it harder for eavesdroppers to trace
end-to-end communications. Furthermore, mixes only know the node that
it immediately received the message from, and the immediate
destination to send the shuffled messages to, making the network
resistant to malicious mix nodes.

Each message is encrypted to each proxy using public key
cryptography; the resulting encryption is layered like a Russian doll
(except that each “doll” is of the same size) with the message as the
innermost layer. Each proxy server strips off its own layer of
encryption to reveal where to send the message next. If all but one
of the proxy servers are compromised by the tracer, untraceability
can still be achieved against some weaker adversaries.

[MixNetworks]

[image: image]

Pseudonymous remailers

A pseudonymous remailer or nym server, as opposed to an anonymous
remailer, is an Internet software program designed to allow people to
write pseudonymous messages on Usenet newsgroups and send
pseudonymous email. Unlike purely anonymous remailers, it assigns its
users a user name, and it keeps a database of instructions on how to
return messages to the real user. These instructions usually involve
the anonymous remailer network itself, thus protecting the true
identity of the user.

[RemailerNym]

Nym servers

A nym server (short for “pseudonym server”) is a server that provides
an untraceable e-mail address, such that neither the nym server
operator nor the operators of the remailers involved can discover
which nym corresponds to which real identity.

To set up a nym, you create a PGP keypair and submit it to the nym
server, along with instructions (called a reply block) to anonymous
remailers (such as Cypherpunk or Mixmaster) on how to send a message
to your real address. The nym server returns a confirmation through
this reply block. You then send a message to the address in the
confirmation.

[NymServer]

Anonymous remailers

An anonymous remailer is a server that receives messages with
embedded instructions on where to send them next, and that forwards
them without revealing where they originally came from. There are
Cypherpunk anonymous remailers, Mixmaster anonymous remailers, and
nym servers, among others, which differ in how they work, in the
policies they adopt, and in the type of attack on anonymity of e-mail
they can (or are intended to) resist

[AnonymousRemailer]

Type I (Cypherpunks)

A Cypherpunk remailer sends the message to the recipient, stripping
away the sender address on it. One can not answer a message sent via
a Cypherpunk remailer. The message sent to the remailer can usually
be encrypted, and the remailer will decrypt it and send it to the
recipient address hidden inside the encrypted message. In addition,
it is possible to chain two or three remailers, so that each remailer
can’t know who is sending a message to whom. Cypherpunk remailers do
not keep logs of transactions.

[TypeI]

More documentation on Cypherpunk remailers:

https://www.iusmentis.com/technology/remailers/index-cpunk.html

https://www.iusmentis.com/technology/remailers/index-anon.html

Last modified: 20 Jun 1998

Properties:

	Transport (between the Cypherpunk remailers): SMTP / POP3

	Format: MIME?

Cons:

	replay attacks

	flooding attacks

	
	no central directory server, which creates an asymmetry of

	information about the remailers in the network. The not equally
distributed knowledge of current servers can be exploited to
undermine anonymity and is one of the Cons of the system

[HuMixmaster]

	no user friendly clients

	old crypto

	no possibility to replay

	no network diversity/poor anonymity set

	spam

[image: image]

Type II Mixmaster

In Mixmaster, the user composes an email to a remailer, which is
relayed through each node in the network using SMTP, until it finally
arrives at the final recipient. Mixmaster can only send emails one
way. An email is sent anonymously to an individual, but for them to
be able to respond, a reply address must be included in the body of
the email. Also, Mixmaster remailers require the use of a computer
program to write messages. Such programs are not supplied as a
standard part of most operating systems or mail management systems.

[TypeII]

Mixmaster Protocol Version 2, December 29, 2004:

Cryptographic Algorithms:

The asymmetric encryption mechanism is RSA with 1024 bit RSA keys and
the PKCS #[MixOnion] v1.5 (RSAES-PKCS1-v1_5) padding format [Nymtech]. The
symmetric encryption mechanism is EDE 3DES with cipher block chaining
(24-byte key, 8-byte initialization vector). MD5 is used as
the message digest algorithm.

Packet format:

The header sections (except for the first one) and the packet body
are encrypted with symmetric session keys

[Mixmaster]

Properties:

	topology: cascade (no scalability, then poor anonymity set)

	
	mixing strategy: batch and reorder (unpredictable delays) Have an

	adjustable size message pool in which incoming packets are collected
and re-sorted randomly before being forwarded.

	Key/node discovery: pinger

	Transport: SMTP

	Format: MIME?

	Packets: all packets are the same size.

	Packet format:

	Cover traffic: can send dummy packages

	Compatible with Cypherpunk messages.

Pros:

	third party untraceability between sender and receiver

	resistant to timing correlation attacks

	
	support replies or anonymous recipients (not resistant to replay

	attacks)

Cons:

	not resistant to active attacks, eg. dropping packets and causing
denial of service

	not resistant to replay attacks

	no central directory server (network partitioning)

	no user friendly clients

	old crypto

	no replies

	no network diversity/poor anonymity set

	spam

Packet structure:

[image: image]
[image: image]

Type III Mixminion

A Mixminion remailer attempts to address the following challenges in
Mixmaster remailers: replies, forward anonymity, replay prevention
and key rotation, exit policies, integrated directory servers and
dummy traffic. They are currently available for the Linux and Windows
platforms. Some implementations are open source.

[TypeIII]

Mixminion supports Single-Use Reply Blocks (or SURBs) to allow
anonymous recipients. A SURB encodes a half-path to a recipient, so
that each mix in the sequence can unwrap a single layer of the path,
and encrypt the message for the recipient. When the message reaches
the recipient, the recipient can decode the message and learn which
SURB was used to send it; the sender does not know which recipient
has received the anonymous message.

[Mixminion]

Properties:

	Transport: TLS instead of SMTP.

	Key/node discovery: directory servers or pinger

	Key rotation:

	Up to 32 instead of 20 hops.

	Packet format: Sphinx

	Compatible with Cypherpunk and Mixmaster messages.

Pros:

	directory servers (no partitioning)

	Indistinguishable between forward and reply messages.

	Forward secrecy by using TLS

Cons:

	no user friendly clients

	old crypto

	no network diversity

	spam

[image: image]

Remailer vulnerabilities

https://www.freehaven.net/anonbib/cache/rprocess.html

Katzenpost

Properties:

	topology: stratified (scales, better anonymity set)

	mixing strategy: stop and go (predictable relays)

	packet format: Sphinx

	
	it has Providers as entry point that require authentication,

	therefore it is needed to first

	sender needs to know the receiver Provider (no receiver anonymity?)

Pros:

	third party untraceability between sender and receiver

	better scalability, therefore better network diversity/anonymity set

	predictable delays

	
	it could be possible to use the mixnet to send Email only between two

	organizations that “trust” each other without SPF to have 3rd party
unlinkability

Cons:

	
	License is AGPL v3, not compatible with xGPL v2, which means it can’t

	be part of iOS. katzenpost license can not be changed cause one of
their authors. We’d need to rewrite katzenpost client and mailproxy
to use it in iOS

	
	not designed to run with Email messages there is a mailproxy, but

	katzenpost devs are unhappy with the mail proxy

	no production network atm

	sender needs to authenticate with a Provider

	sender needs to know the receiver Provider (no sender anonymity)

	
	for the providers to be able to send Email to any destination, they

	need to use SPF, therefore no sender anonymity

	
	different Email traffic patterns (eg. Deltachat) would need different

	delay parameters

[katzenpostSite]

Nym mixnet

Cons:

	
	License is Apache, not compatible with GPL. So far all software

	created by pEp must be GPL(-compatible).

[Nymtech]

Mix networks software

reliable

Remailers Type I and II users’ maunal :

https://gateway.ipfs.io/ipfs/QmboFHizh9ys57DXcVsniVDYS46gsiBP716u2sqQE7xgV4

https://www.panta-rhei.dyndns.org/JBNR-en.htm#CForm

Revised: 23-Sep-99 [Reliable v1.0.2]

Are the OpenPGP encrypted emails not padded?

mixmaster

Code in sourceforge [^mixmaster origin] is not in CVS system.

Uses RSA (and DSA?) for encryption and PKCS#1 for padding.

Several repositories with some updates

https://github.com/eurovibes/mixmaster:

Mixmaster version 3 – anonymous remailer software – (C) 1999
Anonymizer Inc.

Commits from Nov 2001 to Oct 2001?

One of the first versions, 2.9beta32 says:

It supports OpenPGP encryption (compatible with PGP 2, PGP 5 and
GnuPG).

(Only for the recipient or also for the mixes?)

https://github.com/crooks/mixmaster

Commits from 2004 (including previous code) to 2014

https://github.com/merkinmuffley/mixmaster4096

Commits from 2014 to 2018

Encryption with 4096 bits RSA

https://github.com/crooks/pymaster

Mixmaster version 3 implementation in Python

Commits from Feb 2013 to Jun 2013.

Uses RSA for encryption and PKCS#1 for padding.

OpenPGP is used only for the remailer admins.

No license

https://github.com/crooks/mimix

provide a Mixmaster-like protocol with support for larger RSA keys
(up to 4096 bits), replacement Hash (SHA2) and Symmetric Ciphers
(AES). Instead of using SMTP for inter-Remailer traffic, Mimix uses
HTTP.

Commits from Oct 2013 to Mar 2014

GPL license

Mixminion

Commit from 2002 to 2012.

C bindings and Python

License until v1.0.0 GPL, later BSD

https://github.com/tim54000/cypherpunk-cli

Rust

2019

https://github.com/byte-mug/go-cypherpunk

Go

Aug 2020

Running remailers

https://apricot.fruiti.org/echolot/rlist2.html

Last update: Thu Sep 3 10:30:01 2020.

All OpenPGP remailer keys are dsa1024 for signing and elg1024 for
encryption, except for remailer@kroken.de.eu.org, which are rsa4096.

$remailer{"austria"} = "<mixmaster@remailer.privacy.at> cpunk max mix pgp pgponly repgp remix latent hash cut test ekx inflt50 rhop5 reord klen1024";
$remailer{"cloaked"} = "<mixmaster@cloaked.pw> cpunk max mix middle pgp pgponly repgp remix esubbf hsub latent hash cut test ekx inflt50 rhop5 reord post klen1024";
$remailer{"dizum"} = "<remailer@dizum.com> cpunk max mix pgp pgponly repgp remix latent hash cut test ek ekx esub inflt50 rhop5 reord post klen64";
$remailer{"frell"} = "<godot@remailer.frell.eu.org> cpunk max mix pgp pgponly repgp remix latent hash cut test ekx inflt50 rhop5 reord post klen1024";
$remailer{"hsub"} = "<hsub@mixmaster.mixmin.net> cpunk max pgp pgponly repgp remix esubbf hsub latent hash cut test ekx inflt50 rhop5 reord klen100";
$remailer{"kroken"} = "<remailer@kroken.de.eu.org> cpunk max mix middle pgp pgponly repgp remix latent hash cut test ekx inflt50 rhop5 reord klen1024";
$remailer{"lambton"} = "<remailer@lambton.org> cpunk max mix middle pgp pgponly repgp remix esubbf hsub latent hash cut test ekx inflt50 rhop5 reord klen256";
$remailer{"paranoia"} = "<mixmaster@remailer.paranoici.org> cpunk max mix pgp pgponly repgp remix latent hash cut test ekx inflt50 rhop5 reord post klen150";
$remailer{"redjohn"} = "<remailer@redjohn.net> cpunk max mix middle pgp repgp remix esub hsub latent hash cut test ek ekx inflt50 rhop5 reord post klen1024";
$remailer{"senshi"} = "<senshiremailer@gmx.de> cpunk middle pgp latent ek ekx esub cut hash repgp reord ext max test inflt10 rhop2 klen200";
$remailer{"zip2"} = "<mix@mail.zip2.in> cpunk max mix pgp pgponly repgp remix esubbf hsub latent hash cut test ekx inflt50 rhop5 reord post klen1024";

Katzenpost

See Katzenpost

Nym Mixnet

See Nym mixnet

Comparative remailer mix neworks, onion routing and pEp

This is not an exhautive comparative and might not be accurate.

It is base on the pages:

	Type I (Cypherpunks)

	Type II Mixmaster

	Type III Mixminion

	Onion routing

	Proposal 1 (P1) design

	
	Remailer

	Mixnetwor
ks

	
	Onion
Routing

	pEp
MixMailer

	
	Type
I/Cypherp
unks

	Type
II/Mixmas
ter

	Type
III/Mixmi
nion

	Tor

	

	transport

	SMTP

	SMTP

	TLS +
SMTP?

	TLS

	SMTP?

	nodes key

	NA

	yes

	yes

	yes

	yes
(OpenPGP)
?

	key
rotation

	NA

	no

	yes

	yes

	active/pa
sive

	nodes/key
discovery

	manual

	pinger?

	directory

	dirauths

	GNS?

	types of
nodes

	NA

	same?

	several?

	“G,M,E”

	same?

	packet
format

	?

	?

	Sphinx

	specific

	?

	packet
size

	different

	same?

	same

	same

	different
in
future?

	packet
mixing

	NA

	yes

	yes

	no

	yes in
future?

	cover
traffic

	NA

	yes

	yes?

	no

	?

	directory
server

	no

	no

	central

	decentral
ized

	GNS/trust
ed
nodes?

	reply

	no

	no

	SURB

	“yes,
circuit”

	NA

	spam

	yes

	yes

	yes

	NA

	?

	network
diversity

	no

	no

	no

	yes

	?

	user
friendly

	no

	no

	no

	yes

	?

	old
crypto

	yes

	yes

	yes

	no

	?

“Open” vs “close” system

In both Proposal 1 (P1) design and Proposal 2 (P2) we should decide whether
it should be possible to send Email to any Email service, eg. gmail or
to a few Email services, eg. riseup and systemli or several different
companies.

In the “open” system there’s no solution to avoid spam. If the public
keys are available and anyone can join the mixnet, spammers can also
send encrypted spam. Also, services like Gmail will refuse to receive
Email from other domains/services not using [SPF]. If the mixnet
provider/service uses SPF, then it’s not possible to have sender
anonymity (unlinkability).

In the “close” system, a malicious provider could also inject spam, but
it’d be less likely, specially if the users have to authenticate to the
providers, which is the case of Katzenpost .

Diagram with errors:

[image: image]image

Peer to Peer networks

GNUnet

GNUnet is a software framework for decentralized, peer-to-peer
networking and an official GNU package. The framework offers link
encryption, peer discovery, resource allocation, communication over
many transports (such as TCP, UDP, HTTP, HTTPS, WLAN and Bluetooth)
and various basic peer-to-peer algorithms for routing, multicast and
network size estimation.

GNUnet’s basic network topology is that of a mesh network. GNUnet
includes a distributed hash table (DHT) which is a randomized variant
of Kademlia that can still efficiently route in small-world networks.
GNUnet offers a “F2F topology” option for restricting connections to
only the users’ trusted friends. The users’ friends’ own friends (and
so on) can then indirectly exchange files with the users’ computer,
never using its IP address directly.

GNUnet uses Uniform resource identifiers (not approved by IANA,
although an application has been made).[when?] GNUnet URIs consist of
two major parts: the module and the module specific identifier. A
GNUnet URI is of form gnunet://module/identifier where module is the
module name and identifier is a module specific string.

[gnunetGNUnet]

A distributed hash table (DHT) is a distributed system that provides
a lookup service similar to a hash table[GNUnet]: (key, value) pairs are
stored in a DHT, and any participating node can efficiently retrieve
the value associated with a given key.

[DHT]

GNS

GNUnet includes an implementation of the GNU Name System (GNS), a
decentralized and censorship-resistant replacement for DNS. In GNS,
each user manages their own zones and can delegate subdomains to
zones managed by other users. Lookups of records defined by other
users are performed using GNUnet’s DHT

[gnunetGNS]

Attacks

Based on [AttacksAnonymitySystems] talk on 2003 that explained the design
of Type III Mixminion to mitigate the vulnerabilities the previous
remailers: Type II Mixmaster and Type I (Cypherpunks).

Explanation of the attack, goal of the attack, which are the adversaries,
which are the capabilities or the adversarios and which the mitigations (M)

Distinguish different-size messages

A passive local adversary can guess which message coming out of a mix
corresponds to a message coming in just by the size.
They can guess also the position of the message in the path.

Mitigation: padding. Add random junk to the bottom to replace the header
that is removed.

Cyhperpunk remailer is vulnerable to this, but not mixmaster or mixminion.

Replay attack

An adversary copy the message and send it back, it will follow the same path.
It’s traceable by a global passive adversary.
It helps local passive adversaries and rogue operators.
Depends on where the message is going, eg. same ISP.

Mitigation: add hash to the header and get nodes to cache the hashes. If an
incoming message is already in the cache, drop it.

Problem: nodes would need to remember cache forever.

Mitigation: add expiration date to the cache, eg. 3 days ago and 3 days from
now. If expiration of cache is more than 7 days old, drop it.
Adversaries can’t tell when the message was sent from its expiration date.

Cyhperpunk remailer is vulnerable to this attack, but not mixmaster or
mixminion.

Flooding (Blending) attack

An active local adversary send many messages to detect a legit one.
Very effective attack in batch mixes, but not in pooling ones.
There’re other cheaper and more effective attacks.

Mitigation: pooling mixnet.

Trickle attack (n-1)

If there’s only one user (1 legit message) at a given interval of time,
flooding attack is also effective in pooling mixes.

Mitigation: dummy decoy messages.

Problem: dropped at some node, only covers internal traffic.

Cyhperpunk remailer is vulnerable to this attack, but not mixmaster or
mixminion.

Passive subpoena attack

A local passive adversary copy message for a later subpoena.

Mitigation: encrypt link transmission (TLS)

Problem: TLS can be enforced in nodes running TLS and postfix doesn’t rotate
keys too often.

Solution: enforce link transmission encryption at protocol level and have
effemeral keys that rotate often.

Cyhperpunk and mixmaster remailers are vulnerable to this attack, but not
mixminion.

Active subpoena attack

A rogue operator can record messages for a later subpoena.

Mitigation: periodic key rotation.

Cyhperpunk and mixmaster remailers are vulnerable to this attack, but not
mixminion.

Partition attack on client knowledge

Adversary make some users to connect to a different set of nodes that
it’s easier to observe or control by the adversary.

Different versions of OpenPGP encrypt differently and looks different.
Also choosing different algorithms.
Watching users that are using a key about to expire (not that common).

It needs the atacker to do something else.
It can be statistical analysis over time.

Mitigation: Directory servers (DSs) have to be part of the specification to
avoid different DSs behaving differently.
They also have to sign bundles.
Problem: how can DSs agree on what to sign?

Question: having DSs is not P2P?
Answer: there’re several DSs that talk to each other, so it’s P2P in that sense
But there’s an small number of DSs and it’s static cause their public keys need
to be in the code.

Partition attack on message expiration date

The adversary delays a message near to its expiration date, so that they can
recognize it cause because there’re not that many.
Statistical attack, not deterministic.

Mitigation: No expiration dates, keep hashes until keys rotate.

Tagging attack on headers

An adversary flips bits in the encrypted payload at the possition of the header.
If the adversary owns a node later in the path that correspond to the broken
header, they can recognize the message.

Mitigation: hash covering the entire header.

Mixmaster is vulnerable to this attack.
There’re easier and more effective attacks.

Tagging attack on payload

Adversary flips some bits in the payload, and try to recognize altered messages
when they’re delivered.

Mitigation: Make the hash cover the payload too.

Attack on multiple messages

Large messages that are splitted into packets, they can have different routes,
but they all need to end in the same last remailer to reconstruct the message.

A passive global adversary observing only input and output of the mixnet can
correlate the messages by number of them.
Users can only “hide” with other users using the net in the same way, eg.
messages containing a vote or pictures have different patterns.
Also passive local adversaries can gather enough information observing the net
enough time.

Very effective attack: don’t send large files unless every body else does it
too.

Cyhperpunk, mixmaster and mixminion are vulnerable to this attack.

Pseudospoofing

Rogue operator running several nodes.
In mixmaster an operator can join the network with human interaction, though
the operator can have different personas and operate large part of the network.
In mixminion there’s no human interaction.
Tor uses “families”, scripts, authorities and humans to detect these cases.
Ratio of users per node, not clear
If user retrieves the nodes they are going to use by pinging them, then it’s
lear which nodes they’re going to use.

Intersection attacks

Adversaries can know who are the users over time, cause the tend to do the same
thing more than once. Over time it’s possible to know who they are.
eg. every morning a user sends message to same receiver, except when they are
on holidays.
Difficult except for a global passive adversary or rogue operator that happens
to be consistenly the 1st and last hop.

Timing and packet counting attacks

Adversary do statistical analysis of network traffic.
Mostly on low-latency systems with pool of messages.

Mitigation: padding. Even if timing analysis is harder with delays, the system
can not add too much delay to keep it usable.

Bottleneck compromises

In a nym server system obviously the nym server is a Bottleneck since all the
traffic goes throug it.

A node is more reliable might be used more often and therefore attacking/owning
easies attacks.
Trade-off between having users choose reliable servers or servers in one
jurisdiction.

Proposal 1 (P1)

	Code API / Interface

	Proposal 1 (P1) design

	pEp mesages structure

Code API / Interface

Proposed by V.

Node Interface to register as a node

PEP_STATUS register_node(PEP_SESSION session, pEp_identity *ident);

def register_node(ident):
 "parameter ident must be a pEp.Identity"

Client Interface to discover nodes

PEP_STATUS get_registered_nodes(PEP_SESSION session, identity_list **nodes);

def get_registered_nodes():
 "returns list with identities"

Proposal 1 (P1) design

aka pEp onion routing or mix network or remailer?

TBD.

Based on notes talking with V. on February 3, 2020 and in March.

See Comparative remailer mix neworks, onion routing and pEp for an overview about onion routing and mix networks.

Routing

Client decide the route for the message. > The client encrypts the
message with the recipients OpenPGP key and some nodes’ OpenPGP keys.

See pEp mesages structure.

This in a similar to Type I (Cypherpunks) remailers.

The client sends the message to the first node. The first node
receive the message and decrypt it. It can know whether the message
is from a trusted node (by the color).

(How the color is calculated?, by the signature of the sender?)

Since the message is already encrypted for the next node, there is no
need to re-encrypt it.

(Does the node needs to sign it before sending it to the next node?)

Transport

SMTP. No plan to enforce TLS cause Sequoia is working on Forward
Secrecy.

(How would forward secrecy work with different layers of encryption?)

Nodes’ keys

It would be the same type of key that the engine is using. If engine
is using Sequoia, the keys will be OpenPGP. It could be symetric
keys, but for onion routing they need to be asymmetric.

(Not really true. Tor generates a symetric session key for circuit to
minimize the expensive computation with asymetric keys)

Key rotation

No automatic key rotation. The engine do key distribution and key
reset Key reset can happen actively or passively.

(In Katzenpost key rotation happen often and the key rotation moment is
vulnerable to attacks. OpenPGP keys don’t change that often.)

Key discovery (by clients)

The first time that a user/node send a message, the key is attached.
A client needs to exchange a couple of messages with every node to
discover their keys.

(How would this scale with thousands of nodes?)

Nodes and key discovery by clients and nodes

Via GNS

Nodes should register, with an email address and a key, what is
already in pEp identity. The key should be in ASCII armor Clients
obtain the nodes from GNS.

(did V. mention Bézier curve?)

CG proposed to use the CERT record type [CERT]

Routing

First client obtain the nodes. Then client choose the route It is
still needed to define the algorithm to choose the route. Initially
it could be a dummy algorithm, like choose 3 nodes randomly. There
should be a maximum of hops to choose.

Even choosing always the same route path, some degree of anonymity can
be achieved by mixing packets of the same size and introducing delays.

Notes on Aug 12, 2020:

In the context of Mixnets “free routing” gives actually less
anonymity since there’s less entropy, so it’s actually better to
implement cascade topology (fixed position in the route). With this
topology as long as 1 node is honest, it’s fine. It’s even better, to
have an stratified topology, in which there’re groups of nodes for
then entry, the middle and the exit. The problem of free routing is
that eventually you might end up choosen a path where all the nodes
are compromised. In Tor this is minimized by having guard (sticky
entry) nodes.

Types of nodes

All the same. This avoid the exit node problems.

(which exit node problems avoid this?, spam?)

Packet format

Messages are MIME Multipart Encrypted (and Signed?) So far messages
are not divided in packets nor padded. The message encrypted for all
layers would need to be divided into packets. This is still not
implemented. Clients might need that a message is a packet for
debugging.

Packet size

So far packets would have the size that the underlying transport give
it to them. Once the engine divide messages in packets, they can be
padded. The engine is already capable to pad messages.

(packets need to be all the same size -and mixed- to achieve
unlinkability)

Notes on Aug 12, 2020:

Impl. fixed-sized padding to messages. We could have 2 different
packet/message size. One “large” and one “small”. eg. 50mb and 50kb)

OpenPGP already does padding and we would need to modify that operation,
but we should not modify the way OpenPGP works.

Only remailers Type I use OpenPGP for encryption.

Packet mixing

There would be mixing of packets once they’re the same size.

(If there is no packet mixing, it won’t be a mix network nor a
remailer.)

Cover traffic

Not planned

Notes on Aug 12, 2020:

Cover traffic mitigates statistical disclosal attack/analysis, which
adds the “unobservability” property.

Delays

We have not discussed this.

Notes on Aug 12, 2020:

Delay and (one of the strategies, mixmaster’s one, is “pooling”)
(could use postfix queue), which add the “unlinkability” property

Directory server

There are not directory servers. Trusted nodes using trustwords.

(How this would work?)

Reply

Since the recipient sees who was the original sender, there is no
need for special type of reply.

(Then there won’t be sender anonymity from the the recipient point of
view)

Spam

Since the Emails are encrypted, there won’t be spam.

Remailers require to have the node key to send an Email to them, that
did not prevent spam.

(How would spam be prevented using discoverable OpenPGP keys?, how would
the Emails arrive to recipients without SPF or DKIM?, how there could be
sender anonymity with SPF?)

Network diversity

Initially there would be only pEp nodes.

(anonymity ♡ company, how other people would be incentivated to run
nodes?)

Crypto

Modern OpenPGP crypto

(OpenPGP computation might be expensive?)

Deployment diagram

Deployment

[image: ../../_images/deployment.svg]

pEp mesages structure

pEp messages structure when encrypting/decrypting several layers.

Example in which Alice encrypts first a message for Bob, then encrypts
the encrypted message to Carol. Alice sends the message to Carol. Carol
receives de message, decrypt, and sends the body of the decrypted
message to Bob. Bob receives, decrypt it and see the message that Alice
sent. The communication happens then in this direction:

Alice -> Carol -> Bob

Alice wants to send this message to Bob

Hi Bob,
this is Alice!

Alice creates the message for Bob

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="4bc216fb60fb5f2d6a48d71f5810ff9e"

--4bc216fb60fb5f2d6a48d71f5810ff9e
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline; filename="msg.txt"

Subject: Subject: from Alice to Bob

Hi Bob,
this is Alice!

--4bc216fb60fb5f2d6a48d71f5810ff9e
Content-Type: application/pgp-keys
Content-Disposition: attachment; filename="pEpkey.asc"

-----BEGIN PGP PUBLIC KEY BLOCK-----
[...]
-----END PGP PUBLIC KEY BLOCK-----

--4bc216fb60fb5f2d6a48d71f5810ff9e--

Alice encrypts the message for Bob

From: Alice Lovelace <alice@openpgp.example>
To: Bob Babagge <bob@openpgp.example>
Subject: =?utf-8?Q?p=E2=89=A1p?=
X-pEp-Version: 2.1
MIME-Version: 1.0
Content-Type: multipart/encrypted; boundary="2cfc2f5be8c232219b7b77f1a79092a";
protocol="application/pgp-encrypted"

--2cfc2f5be8c232219b7b77f1a79092a
Content-Type: application/pgp-encrypted

Version: 1
--2cfc2f5be8c232219b7b77f1a79092a
Content-Type: application/octet-stream
Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename="msg.asc"

-----BEGIN PGP MESSAGE-----
[...]
-----END PGP MESSAGE-----

--2cfc2f5be8c232219b7b77f1a79092a--

Alice creates a message for Carol

Note that the message headers from Alice to Bob are included in the body
of the message from Alice to Carol.

From: Alice Lovelace <alice@openpgp.example>
To: Carol Hopper <carol@openpgp.example>
Subject: Subject: from Alice to Bob
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline; filename="msg.txt"

=46rom: Alice Lovelace <alice=40openpgp.example>
To: Bob Babagge <bob=40openpgp.example>
Subject: =3D=3Futf-8=3FQ=3Fp=3DE2=3D89=3DA1p=3F=3D
X-pEp-Version: 2.1
MIME-Version: 1.0
Content-Type: multipart/encrypted; boundary=3D=2256788e955154139fffab44e5=
f290f91=22; =20
protocol=3D=22application/pgp-encrypted=22

--56788e955154139fffab44e5f290f91
Content-Type: application/pgp-encrypted

Version: 1
--56788e955154139fffab44e5f290f91
Content-Type: application/octet-stream
Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename=3D=22msg.asc=22

-----BEGIN PGP MESSAGE-----
[...]
-----END PGP MESSAGE-----

--56788e955154139fffab44e5f290f91--

Alice encrypts the message for Carol

From: Alice Lovelace <alice@openpgp.example>
To: Carol Hopper <carol@openpgp.example>
Subject: =?utf-8?Q?p=E2=89=A1p?=
X-pEp-Version: 2.1
MIME-Version: 1.0
Content-Type: multipart/encrypted; boundary="6fa56ec33679af179f5f59a10722e17";
protocol="application/pgp-encrypted"

--6fa56ec33679af179f5f59a10722e17
Content-Type: application/pgp-encrypted

Version: 1
--6fa56ec33679af179f5f59a10722e17
Content-Type: application/octet-stream
Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename="msg.asc"

-----BEGIN PGP MESSAGE-----
[...]
-----END PGP MESSAGE-----

--6fa56ec33679af179f5f59a10722e17--

and sends it to Carol

Carol receives the message and decrypts it

From: Alice Lovelace <alice@openpgp.example>
To: Carol Hopper <carol@openpgp.example>
Subject: Subject: from Alice to Bob
X-pEp-Version: 2.1
X-EncStatus: reliable
X-KeyList:
EB85BB5FA33A75E15E944E63F231550C4F47E38E,EB85BB5FA33A75E15E944E63F231550C4F47E38E,37D13DE1DCBAFCE7BCE117EE311399EB28E3E8AA
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline; filename="msg.txt"

=46rom: Alice Lovelace <alice=40openpgp.example>
To: Bob Babagge <bob=40openpgp.example>
Subject: =3D=3Futf-8=3FQ=3Fp=3DE2=3D89=3DA1p=3F=3D
X-pEp-Version: 2.1
MIME-Version: 1.0
Content-Type: multipart/encrypted; boundary=3D=225a2e1b238a9435439d7f32eb=
295b6f=22; =20
protocol=3D=22application/pgp-encrypted=22

--5a2e1b238a9435439d7f32eb295b6f
Content-Type: application/pgp-encrypted

Version: 1
--5a2e1b238a9435439d7f32eb295b6f
Content-Type: application/octet-stream
Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename=3D=22msg.asc=22

-----BEGIN PGP MESSAGE-----
[...]
-----END PGP MESSAGE-----

--5a2e1b238a9435439d7f32eb295b6f--

Carol sends the body of the message to Bob

Bob receives and decrypt it

From: Alice Lovelace <alice@openpgp.example>
To: Bob Babagge <bob@openpgp.example>
Subject: Subject: from Alice to Bob
X-pEp-Version: 2.1
X-EncStatus: reliable
X-KeyList:
EB85BB5FA33A75E15E944E63F231550C4F47E38E,EB85BB5FA33A75E15E944E63F231550C4F47E38E,D1A66E1A23B182C9980F788CFBFCC82A015E7330
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline; filename="msg.txt"

Hi Bob,
this is Alice=21

Proposal 1.1 (P11)

aka pEp onion routing/remailer?

This is an attempt to transcribe V. ideas after juga’s presentation on
January 12, 2021 [MixmailerSlides]
and some other comments with N. and D.
These are not juga’s ideas.

As D. noted, it should probably not be called mixnet.

This proposal very similar to Proposal 1 (P1) design. The main difference seems to be not
aiming to implement a mix network but just onion routing, which it is actually
simpler.

Any mention to prototype means this: [Mixmailer]

Routing

As in Proposal 1 (P1), client decide the route for the message.

The user might also decide.

Transport

As in P1. SMTP, no TLS.

Nodes’ keys

Same as in P1. Each node have its own private/public OpenPGP keys.

Keys rotation

Not defined

Key discovery (by clients and nodes)

In P1 it was proposed that nodes/clients exchange messages to discover keys.
Then we started to use GNUnet GNS in the prototype.
In this proposal we’ll continue with GNS is used to query the list of nodes to
the authorities and other nodes’ keys.
In the prototype it’s explained in more detail: Mixnet nodes registration in GNS [https://juga0.gitlab.io/pEpPythonMixnet/design/gns.html#gns], though the part
about layers should be ignored.

Key registration

This is being researched by N.

Types of nodes

All the same. In the prototype juga decided thought it would be better to use
stratified topology, but it can be removed.

Topology

Free-routing.

Packet format

No packets, just messages. Not really MIME Multipart Encrypted (and Signed?).
pEp message 2.x? [ref?].

Packet size

Instead of padding in a way that the final messages are all the same few fixed
sizes, they’ll be padded randomly.
If the final message is too big it’ll be just discarded.
This is different to what was tried to implement in the prototype and P1.

Packet mixing & delays

Undecided. If it’s just onion routing, in principle there’s no need for.
In the prototype there was just random delays.

Cover traffic

None.

Directory servers/authorities

In P1 it was said that there was no need. Since we started to use GNS, they’re
needed.
The prototype already assume there’ll be authorities.

Spam

It doesn’t exist.

Network diversity

Community will be made.

Nodes and messages diagram

Nodes and messages

[image: ../_images/nodes_msgs.svg]

Deployment diagram

As the one before, including software components.

Deployment

[image: ../_images/deployment.svg]

Deployment diagram including GNS

As the one before, including GNS.

Deployment with GNS

[image: ../_images/deployment_gns.svg]See Proposals 1, 2 and 1.1 arguments for arguments in pro/con of the several
proposals.

Proposal 2 (P2)

Katzenpost + [Mailproxy]

Mailproxy is a mailserver & mixnet client intended to run on the users’
devices. Not as a provider’s mail server, as this would create an
“entry-node” to the mixnet which defeats certain security guarantees.

The client would need to configure the SMTP socket address (IP:port) of the
mailproxy.

Outlook clients use [MAPI] . It’s possible to use MAPI over HTTP.

Differences between loopix and katzenpost

In loopix there’s only 3rd party anonymity (unlinkability), while
katzenpost introduced the concept on “ephemeral” providers, which are
the entry point for the client/user to query their “remote spool” to
retrieve/send the messages via Single Use Reply Blocks ([katzenpostSURB] s).

This way in katzenpost there’s also sender and receiver anonymity
(unlinkability)

In loopix the user keys are also in the PKI, (are they also in
katzenpost?)

Proposals 1, 2 and 1.1 arguments

See Proposal 1 (P1) design, Proposal 2 (P2) and Proposal 1.1 (P11).

Pro and con arguments for the different proposals discussed after juga’s
presentation on January 12, 2021 [MixmailerSlides] .

Stratified topology

	arguments against:

	attacks on the exits

	authorities decide the possition

	nodes should decide the route (free-routing)

j counterarguments:

	attacks on exits:

	do not deanonymize sender, nor their location, per se

	can be done by any operator that runs the exit:

	reason why TLS is recommended (avoid MiTM)

	if target is the receiver, it is easy to find the “random” exit

	intelligence agencies try more sophisticated attacks trying to deanonymize
the whole path

	it’s the node that decide the possition in Loopix

Authorities

j arguments:

	they’re needed so that:

	all clients have the same view of the network, otherwise sybil attack

	can reward/penalize nodes that go on and off, missbehave, etc.

	counterarguments:

	it’s the nodes which take those decissions.

TLS

j arguments:

	avoid clear metadata at last hop

	Let’s Encrypt has helped a lot to do not depend on 3rd party entities

	counterarguments:

	0 trust on TLS

Message size

j arguments:

	can’t pad while not possible to predict final size, what is only possible
with same OpenPGP algo. and without compression

	need of fixed size (huge) padding so that the attacker doesn’t know in which
position of the route is the message

	counterarguments:

	random padding, if message is too big and it’s know it’s at 1st possition in
path, bad luck

OpenPGP

V.: pEp is not OpenPGP/MIME when 2 pEp clients talk, but it’s OpenPGP/MIME
compatible when the receiver is not pEp client.

Hidden headers

V.:

	agrees that the metadata is clear at last hop

	Outside (clear) From might not be the same as the inside (encrypted) From

	it has been implemented since years

GNS

V.: it’s needed that GNUnet implements a GNS library

Other

V.: all this should be impemented in the engine including GNS
resolving/registering

Katzenpost

j arguments:

	we can rewrite mail proxy. License of nodes running software doesn’t matter cause
pEp is not going to run them

	contrarguments: not the technical solution we want

Threat model

See Threat models for an idea on threat modeling.

This is the threat model on Proposal 1.1 (P11).

Arquitecture diagrams

See Nodes and messages,
Deployment and
Deployment with GNS

Threats on the software

Threats on the network transmission

See Attacks on common attacks to anonymity systems.

Adversaries

The adversaries here are all the adversaries mentioned in
Adversaries.

Vulnerabilities

Attacks to which Proposal 1.1 (P11) is vulnerable:

	Replay Attacks

	Blending Attacks

	Passive subpoena attack

	Active subpoena attack

	Partition attack on client knowledge

	Tagging attack on headers

	Tagging attack on payload

	Attacks on multiple messages / large files:
While messages are not splitted into packets, the packets don’t have to end
in the same node. But it’s still vulnerable because of different sizes.

	Pseudospoofing

	Intersection attacks

	Timing and packet counting attacks:
Even if padding is added, messages are still different sizes.

Mitigations

 Here specification.
It is in markdown so that kramdown can convert it to xml for RFCs.
It is recommended to read Proposal1.1 and
Threat model.

Introduction

TBD

Requirements Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in BCP 14 ([RFC2119] and [RFC8174])
when, and only when, they appear in all capitals, as shown here.

Terminology

TBD

Own vs existing.

Mix network/mixnet

Onion routing

Remailer

Node

Mix

client

pEp engine

GNUnet node

GNS Resolution

GNS Registration

GNS Delegation

Message

All the content

TBD

Security Considerations

TBD

Roadmap

Overview of what is done so far:

	[X] Research on existing mix networks

	[X] Try existing mix networks and see how they could be adapted

	[X] Implement Proposal 1 including integration tests

	[X] Try GNUnet GNS and write tests

	[X] Document research, experiments, proposal

Next:

	[] Document threat model

	[] Write technical specification

	[] Implement the prototype, adapted to Proposal 1.1 (P11), in the pEp engine

References

On topics mentioned in this documentation.

Papers and RFCs

	AnonTerms

	http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

	Batching

	https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.941.6881&rep=rep1&type=pdf,

	BibMixnets

	https://bib.mixnetworks.org/

	Byzantine

	https://people.csail.mit.edu/idish/ftp/Brahms-PODC.pdf

	DesignAnonymous

	https://www.freehaven.net/anonbib/cache/wiangsripanawan-acsw07.pdf

	Gossip

	http://pages.di.unipi.it/ricci/GossipBasedPeerSampling.pdf

	Loopix

	https://arxiv.org/pdf/1703.00536.pdf

	MixCascadesP2P

	https://www.esat.kuleuven.be/cosic/publications/article-523.pdf

	Mixmaster

	https://tools.ietf.org/html/draft-sassaman-mixmaster-03

	MixminionPaper

	https://www.mixminion.net/minion-design.pdf

	Sphinx

	https://bib.mixnetworks.org/pdf/DBLP:conf/sp/DanezisG09.pdf

	Stopandgo

	https://www.freehaven.net/anonbib/cache/stop-and-go.pdf

	SurveyRouting

	https://dl.acm.org/doi/10.1145/3182658

	Trickle

	https://www.freehaven.net/anonbib/cache/trickle02.pdf

	Trilemma

	https://doi.org/10.1109/SP.2018.00011

	Uniform

	www.irisa.fr/dionysos/pages_perso/sericola/PAPIERS/DSN13.pdf

	Untraceable

	http://www.ovmj.org/GNUnet/papers/p84-chaum.pdf

Web pages

	AnonymousRemailer

	https://en.wikipedia.org/wiki/Anonymous_remailer

	ApplicationThreatModeling

	https://owasp.org/www-community/Application_Threat_Modeling

	CERT

	https://git.gnunet.org/gnunet.git/tree/src/gnsrecord/plugin_gnsrecord_dns.c#n130

	DHT

	https://en.wikipedia.org/wiki/Distributed_hash_table

	gnunetGNS

	https://en.wikipedia.org/wiki/GNUnet#GNU_Name_System

	gnunetGNUnet

	https://en.wikipedia.org/wiki/GNUnet

	HuMixmaster

	https://sarwiki.informatik.hu-berlin.de/Mixmaster_Remailer

	katzenpostSite

	https://katzenpost.mixnetworks.org/

	katzenpostSURB

	https://github.com/katzenpost/docs/blob/subscription_plugin.0/drafts/mix_plugin_subscription.rst

	Mailproxy

	https://github.com/katzenpost/mailproxy

	MAPI

	https://en.wikipedia.org/wiki/MAPI

	Mixmailer

	https://gitea.pep.foundation/pEp.foundation/mixmailer

	MixmailerSlides

	https://gitea.pep.foundation/pEp.foundation/mixmailer_slides

	Mixminion

	https://en.wikipedia.org/wiki/Mixminion

	MixNetworks

	https://en.wikipedia.org/wiki/Mix_network

	MixOnion

	https://ritter.vg/blog-cryptodotis-mix_and_onion_networks.html

	NymServer

	https://en.wikipedia.org/wiki/Pseudonymous_remailer#Contemporary_nym_servers

	Nymtech

	https://nymtech.net/

	OnionRouting

	https://en.wikipedia.org/wiki/Onion_routing

	PET

	https://en.wikipedia.org/wiki/Privacy-enhancing_technologies

	RemailerNym

	https://en.wikipedia.org/wiki/Pseudonymous_remailer

	SPF

	https://en.wikipedia.org/wiki/Sender_Policy_Framework

	STRIDE

	https://en.wikipedia.org/wiki/STRIDE

	ThreatModelingOutputs

	https://owasp.org/www-community/Threat_Modeling_Outputs

	TypeI

	https://en.wikipedia.org/wiki/Anonymous_remailer#Cypherpunk_remailers,_also_called_Type_I

	TypeII

	https://en.wikipedia.org/w/index.php?title=Anonymous_remailer§ion=4#Mixmaster_remailers,_also_called_Type_II

	TypeIII

	https://en.wikipedia.org/wiki/Anonymous_remailer#Mixminion_remailers,_also_called_Type_III

Other

	AttacksAnonymitySystems

	https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-sassaman-dingledine/bh-us-03-dingledine.pdf, https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-sassaman-dingledine/bh-us-03-sassaman.pdf, https://www.youtube.com/watch?v=RQ1ikYB_1LY, https://www.youtube.com/watch?v=tAuCX9V034Q

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pEp MixMailer’s documentation!

 		
 Concepts

 		
 Anonymity

 		
 Adversaries

 		
 Passive adversary

 		
 Global Passive adversary

 		
 Active adversary

 		
 Rogue operators

 		
 Threat models

 		
 Process

 		
 Outputs

 		
 Requirements

 		
 What to implement

 		
 What is it for? (updated Aug 18, 2020)

 		
 Who are users?

 		
 Who is going to operate the/maintain MixMailer?

 		
 Usability

 		
 Which would be the initial components of the system?

 		
 StateoftheArt

 		
 Readings

 		
 Onion routing

 		
 Mix networks

 		
 Pseudonymous remailers

 		
 Anonymous remailers

 		
 Remailer vulnerabilities

 		
 Katzenpost

 		
 Nym mixnet

 		
 Mix networks software

 		
 reliable

 		
 mixmaster

 		
 Mixminion

 		
 https://github.com/tim54000/cypherpunk-cli

 		
 https://github.com/byte-mug/go-cypherpunk

 		
 Running remailers

 		
 Katzenpost

 		
 Nym Mixnet

 		
 Comparative remailer mix neworks, onion routing and pEp

 		
 “Open” vs “close” system

 		
 Peer to Peer networks

 		
 GNUnet

 		
 Attacks

 		
 Distinguish different-size messages

 		
 Replay attack

 		
 Flooding (Blending) attack

 		
 Trickle attack (n-1)

 		
 Passive subpoena attack

 		
 Active subpoena attack

 		
 Partition attack on client knowledge

 		
 Partition attack on message expiration date

 		
 Tagging attack on headers

 		
 Tagging attack on payload

 		
 Attack on multiple messages

 		
 Pseudospoofing

 		
 Intersection attacks

 		
 Timing and packet counting attacks

 		
 Bottleneck compromises

 		
 Proposal 1 (P1)

 		
 Code API / Interface

 		
 Node Interface to register as a node

 		
 Client Interface to discover nodes

 		
 Proposal 1 (P1) design

 		
 Routing

 		
 Transport

 		
 Nodes’ keys

 		
 Key rotation

 		
 Key discovery (by clients)

 		
 Nodes and key discovery by clients and nodes

 		
 Routing

 		
 Types of nodes

 		
 Packet format

 		
 Packet size

 		
 Packet mixing

 		
 Cover traffic

 		
 Delays

 		
 Directory server

 		
 Reply

 		
 Spam

 		
 Network diversity

 		
 Crypto

 		
 Deployment diagram

 		
 pEp mesages structure

 		
 Alice wants to send this message to Bob

 		
 Alice creates the message for Bob

 		
 Alice encrypts the message for Bob

 		
 Alice creates a message for Carol

 		
 Alice encrypts the message for Carol

 		
 Carol receives the message and decrypts it

 		
 Bob receives and decrypt it

 		
 Proposal 1.1 (P11)

 		
 Routing

 		
 Transport

 		
 Nodes’ keys

 		
 Keys rotation

 		
 Key discovery (by clients and nodes)

 		
 Key registration

 		
 Types of nodes

 		
 Topology

 		
 Packet format

 		
 Packet size

 		
 Packet mixing & delays

 		
 Cover traffic

 		
 Directory servers/authorities

 		
 Spam

 		
 Network diversity

 		
 Nodes and messages diagram

 		
 Deployment diagram

 		
 Deployment diagram including GNS

 		
 Proposal 2 (P2)

 		
 Differences between loopix and katzenpost

 		
 Proposals 1, 2 and 1.1 arguments

 		
 Stratified topology

 		
 Authorities

 		
 TLS

 		
 Message size

 		
 OpenPGP

 		
 Hidden headers

 		
 GNS

 		
 Other

 		
 Katzenpost

 		
 Threat model

 		
 Arquitecture diagrams

 		
 Threats on the software

 		
 Threats on the network transmission

 		
 Adversaries

 		
 Vulnerabilities

 		
 Mitigations

 		
 Introduction

 		
 Requirements Language

 		
 Terminology

 		
 All the content

 		
 Security Considerations

 		
 Roadmap

 		
 References

 		
 Papers and RFCs

 		
 Web pages

 		
 Other

_images/Figure1.gif
Send to remailer B

B

Hold for 3 hours
Rermove junk
Send to remailer C

[Sent 10 Bob

Bob|

Jurk]

_images/Red_de_mezcla.png

_images/Figure2.gif
[e ton [5

1 30ES key 1Send to: C
|RSAtoB [Packet ID: 456
| 3DES Key: 2

130ES key 1[Final Hop (Destination in Body)
I 3DES key 2|Packet ID: 789, Message ID: 1479
|RSALOC |3DES Key: 3

! Random Garbage or Encrypted
| old headers (indistinguishable).

| 3DES Key 1 List of Final destinations.
3DES kel 2| st of headers to add to mail

1 3DES key 3|

| Text of message to send.

|
I

I Padding to fill to standard size.
I -

|

_images/Mixmaster_Packetaufbau.png
Public key ID

Header section 1

Length of RSA-encrypted data

Header section 2

RSA-encrypted session key

Initialisation vector

Header section 20

Payload

-
Encrypted header part —»
-

Random padding

Aufbau des Packets

Aufbau der Header Section

/

-

N

Packet ID

3DES Key
Packet-Type identifier
Packet information

Message digest
random padding
Aufbau des header part”

_images/Struktursmall.jpg
Directory Server
Mixmaster Typ 111

Mixmaster Typ I

_static/Figure1.gif
Send to remailer B

B

Hold for 3 hours
Rermove junk
Send to remailer C

[Sent 10 Bob

Bob|

Jurk]

_static/Figure2.gif
[e ton [5

1 30ES key 1Send to: C
|RSAtoB [Packet ID: 456
| 3DES Key: 2

130ES key 1[Final Hop (Destination in Body)
I 3DES key 2|Packet ID: 789, Message ID: 1479
|RSALOC |3DES Key: 3

! Random Garbage or Encrypted
| old headers (indistinguishable).

| 3DES Key 1 List of Final destinations.
3DES kel 2| st of headers to add to mail

1 3DES key 3|

| Text of message to send.

|
I

I Padding to fill to standard size.
I -

|

_static/Red_de_mezcla.png

_static/Struktursmall.jpg
Directory Server
Mixmaster Typ 111

Mixmaster Typ I

_static/Mixmaster_Packetaufbau.png
Public key ID

Header section 1

Length of RSA-encrypted data

Header section 2

RSA-encrypted session key

Initialisation vector

Header section 20

Payload

-
Encrypted header part —»
-

Random padding

Aufbau des Packets

Aufbau der Header Section

/

-

N

Packet ID

3DES Key
Packet-Type identifier
Packet information

Message digest
random padding
Aufbau des header part”

_static/comment-bright.png

_static/ajax-loader.gif

_static/deployment.png
"pEp remailer (deploymment diagram)"

Legend

hardware

Ada's mobile (Ada)

o

' smTP |

(calls in memory

M3 = E(N1pk, E(N2pk, E(N3pk, E(Bpk, M)

mail.systemli.org (Node 1

2

PEp Engine Remailer client code 5o’ I Postfix pipe process' ?

etwork transport

mail.riseup.net (Node 2

Postfix daemon
pEpRemaller Postiix ipe processL) Data that Is being transmited encrypted

etwork transport

ML = EN3pk, EBpk, M)

mail.wauland.de (Node 3}

i
I
I
i
I
I
I
I
I
I
i
i
i
i
v Postfix daemon
libpEpENgine.st PEpRemailer Postfix pipe pmcessD

M= E(Bpk, M)

| i
I I
I I
I I
I I
I I
I I
I I
I I
I I
' ' lsmTP
I I

U U

lbpEpEngine. 5ol gmail.com (B)

— Vv

IMAP/MAPIZ

|
|

|

!

!

| = o D
!

!

!

!

!

.

IMAP/MAPIZ

v Béjty's laptop

libpEpENgine. suDI ThumermmDI
P v

libpEPENgine s

Case scenario: Ada, from her Android mobile, sends a message to Betty,
who receives on her Linux laptop

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/deployment_gns.png
M3 = E(N1pk, E(N2pk, E(N3pk, E(Bpk, M)

pundation (A)

swrp
E(N1pk, E(N2pk, E(N3pk, E(Bpk, M))))
lswrp
mail.riseup.net (Node 2) mail.wauland.de (Node 3)
- a
Postfix daemon
Postfix pipe pmcessD
swp swre EQ surp

I

A

M1 = E(N3pk, E(Bpk, M) '

I

I

I

I

I

I

Ada's mobile (Ada) v

- - \ -~
.- \
- ' T S
T \ - N
- v 7 \
T y | - y L
g a g N a ,
% GNUnet Ada L GNUnet riseun L
libpEpENgine 507D| libgnunetnamestore. suDI libgnunetidentity. suDI libgnunetgns. oD libpEpENgine so! I libgnunetnamestore. - libgnunetidentity. suDI libgnunetgns. suDI libpEpENgine so! I libgnunetnamestore. - libgnunetidenti
: @wa”y@sysmh s (ermimremalerriseup et maloremaler@vauland.de \ grunet-gns b @ s sy o P mwummywumm root N1 N2, N3 (gnunet-namestore -2 root -a -p -t PKEY -n authority -V AUTHORTY_KEY (gnunet-namestore -z oot -a -p -t PKEY -n N2 -V N2_KEV _gnunet-namestore -z root -a -p -t TXT -n N2 -V email=remailer@riseup.net _~ gnumet-namestore -2 root -a -p -t PKEY -n authority -V AUTHORITY_KEY Janunet-namestore -2 root -a -p -
. =.-——
PEp Engine Remailer client code so’

